Low-rate coding using incremental redundancy for GLDPC codes

Cunche M., Savin V., Roca V., Kraidy G., Soro A., Lacan J.

Work supported by the CAPRI-FEC ANR project

IWSSC’08
October 3rd, Toulouse
Introduction

- **FEC codes for the erasure channel**
 - Symbols either erased or received without error

- **Low rate coding** (i.e., add a lot of redundancy)
 - to improve carousel-based transmissions (e.g., with FLUTE/ALC), or to counter with very high loss rates

- **Proposal based on LDPC-staircase codes**
 - Belong to “regular repeat accumulate” codes
 - Now an IETF standard (RFC5170)

- **Extended** with a Generalized LDPC scheme
What is a FEC code for the erasure channel?

- Source object is divided into \(k \) symbols
- **Encoding**: add redundancy with \((N-K) \) repair symbols
- **Decoding**: rebuild the source object from the \(K(1+\varepsilon) \) symbols received

![Diagram of FEC code for the erasure channel]
Proposed coding scheme (1/6)

- Extend a “Mother code” for low rate coding
 - Use a Generalized-LDPC construction to add extra repair symbols.
 - LDPC (mother code)
 - Extension
 - G-LDPC (extended code)
 - Source symbols
 - Repair symbols
 - Extra repair symbols
Proposed coding scheme (2/6)

- «Mother» code: LDPC-Staircase
 - Based on Simple parity checksum (XOR)
 - 1 repair symbol created per constraint node

```
Constraint nodes
(Parity check)
```

Constraint_node 1:
\[S_1 \oplus S_2 \oplus S_5 \oplus P_1 = 0 \]

Constraint_node 2:
\[S_1 \oplus S_3 \oplus S_4 \oplus P_1 \oplus P_2 = 0 \]

Constraint_node 3:
\[S_3 \oplus S_4 \oplus S_5 \oplus P_2 \oplus P_3 = 0 \]
Proposed coding scheme (3/6)

- Encoding
 - **Linear time encoding** thanks to an appropriate code structure

- Iterative Decoding
 - If a constraint node has all but one symbol known, the latter is equal to the sum of the others. Reiterate if possible…
 - **Linear time decoding** 😊

\[
\begin{align*}
S_1 \oplus S_2 \oplus S_5 \oplus P_1 &= 0 \quad S_5 \\
S_1 \oplus S_3 \oplus S_4 \oplus P_1 \oplus P_2 &= 0 \quad S_3 \\
S_3 \oplus S_4 \oplus S_5 \oplus P_2 \oplus P_3 &= 0
\end{align*}
\]
Extended with Reed Solomon (RS) codes

- They are **ideal** codes
- Practical limit on n due to encoding/decoding complexity
 - Cannot be applied directly on the whole source object
- In our case n is small and we can use small Galois Fields (e.g., GF(2^4)) that are easily encoded/decoded

n

k

$n-k$

Source symbols Repair symbols
Proposed coding scheme (5/6)

- Extended G-LDPC code based on Reed-Solomon
 - $(1 + E)$ repair symbols created by constraint node
 - With appropriate RS codes, the first repair symbol remains the parity check (idem LDPC-staircase codes)

![Diagram]

Source symbols

Constraint nodes

Repair symbols

Constraint_node 1:
RS($S_1, S_2, S_5, P_1, P_4, P_5$)

Constraint_node 2:
RS($S_1, S_3, S_4, P_1, P_2, P_6, P_7$)

Constraint_node 3:
RS($S_3, S_4, S_5, P_2, P_3, P_8, P_9$)

Parity check as in mother code

Extra repair symbols
Proposed coding scheme (6/6)

- **Encoding**
 - First round: “Parity check” repair symbols created
 - Additional rounds: Extra repair symbols created on demand
 - Linear complexity

- **Decoding**
 - Iterative Decoding (ID) for G-LDPC codes:
 - Idea: If a constraint node of dimension k, has k symbols known, rebuild the other symbols. And reiterate …
 - Complexity: linear in the number of source symbols 😊
Distribution of the Extra repair symbols (1/5)

● Is it appropriate to produce the same number of Extra Repair Symbol per constraint node?

 ○ Not necessarily!

 ○ We show that a non constant number can help improving the erasure recovery capabilities…

 ○ We tested 3 distributions
Distribution of the Extra repair symbols (2/5)

1/ **Constant**: the number of extra repair symbols connected to a constraint node is constant.
2/ **Uniform**: the number of extra repair symbols connected to a constraint node is uniformly distributed between 0 and a maximum value E_{max}.

Diagram Description

- **Source symbols** are represented by green circles.
- **Constraint nodes** are represented by blue squares.
- **Repair symbols** are represented by red circles.
- **Extra repair symbols** are represented by yellow circles.
3/ Irregular: the number of extra repair symbols connected to a constraint node is irregularly distributed between 0 and a maximum value E_{max}.
Distribution of the Extra repair symbols (5/5)

- **Density evolution analysis**
 - Find a good *irregular* distribution (#3) of the extra repair symbols produced
 - We found the *best* irregular distribution (see paper)

- **In fact, uniform distribution…**
 - …is very close to the best irregular distribution
 - …is better than constant distribution
 - …is fairly simple

We use uniform distribution!
Conditions:
- $K=5,000$ source symbols,
- mother code rate = 1/2

Results (1/2)

<table>
<thead>
<tr>
<th>code rate</th>
<th>Average overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extended codes</td>
</tr>
<tr>
<td></td>
<td>Uniform distrib.</td>
</tr>
<tr>
<td>1/2</td>
<td>11.4%</td>
</tr>
<tr>
<td>1/5</td>
<td>13.0%</td>
</tr>
<tr>
<td>1/10</td>
<td>14.0%</td>
</tr>
<tr>
<td>1/17</td>
<td>14.4%</td>
</tr>
</tbody>
</table>

- Fairly stable performances, even at small code rates 😊
- Unusable with iterative decoding at small rates (use ML decoding…).
Results (2/2)

- Uniform distribution

<table>
<thead>
<tr>
<th>Uniform distribution (infinite length code)</th>
</tr>
</thead>
</table>

- Theoretical limit for uniform distribution (infinite length code)

- Gap to capacity (i.e., distance to ideal code perf.) decreases with the code rate 😊
Additional advantages (1/2)

Advantages at the encoder:

- Flexibility on the encoder side: Extra repair symbols can be produced on demand, in "rounds"
 - To adapt dynamically to the loss rate
 - To start transmissions earlier (no need to wait for all repair symbol creation) and to reduce the delay
 - To save resources (no need to remember all extra repair symbols)
Additional advantages (2/2)

Advantages at the decoder...

- **Limited memory requirements**
 - No need to store the whole matrix, the mother code matrix (much smaller) is sufficient
 - No need to re-build extra repair symbols during decoding (≠ ID with LDPC codes)

- **Backward compatibility...**
 - An RFC5170 compliant decoder can decode with source/parity symbols, ignoring extra repair symbols
To conclude

- An efficient **small rate** coding scheme
 - good erasure recovery capabilities at very very low rates

- Relies on an iterative decoding scheme
 - Guaranties **linear decoding complexity**,
 - Decoding remains fast even with huge source objects (≠ ML decoding)

- Incremental redundancy added **on demand**
 - Provides a high flexibility
To conclude

- A very **simple** design
 - Based on well-known and standardized building blocks

- A possible alternative to rate-less codes
 - We can easily/efficiently reach very small code rates

 With RS over GF(2^4) we can reach a code rate 1/7

 GF(2^8) we can reach a code rate 1/127

 …..
Questions ?