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Abs t rac t .  A construction of a pseudo random generator based on a 
single linear feedback shift register is investigated. The construction is 
related to the so-caLled shrinking generator and is attractive by its con- 
ceptual simplicity. The lower bounds that are provided for period, linear 
complexity and known cryptanalytic attacks allow for efficient practical 
implementations at a reasonable scale. 

1 I n t r o d u c t i o n  

In [1] a new pseudo random sequence generator, the so-called shrinking genera- 
tor, has been suggested by Coppersmith, Krawczyk and Mansour for potential 
use in s tream cipher applications. The shrinking generator is attractive by its 
conceptual simplicity as it combines only two LFSRs in a simple way. One is 
tempted to conjecture that  such a simple construction might be insecure. How- 
ever no successful cryptanalytic attack has been publicly reported so far. 

In this paper we present an apparently simpler structure using only one LFSR 
whose output  sequence is shrunken in a similar way as is done for the shrinking 
generator. As the shrinking of the LFSR-sequence is achieved under the control 
of the LFSR itself, the generator will be called self-shrinking generator. 

Recall that  the shrinking generator [1] uses two binary LFSRs, say LFSR 
1 and LFSR 2, as basic components. The pseudo random bits are produced 
by shrinking the output  sequence of LFSR 1 under the control of LFSP~ 2 as 
follows: The output  bit of LFSR 1 is taken if the current output  of LFSR. 2 is 
1, otherwise it is discarded. For the self-shrinking generator we suggest to use' 
only one LFSR. Instead of output  bits, pairs of output  bits are considered. If a 
pair happens to take the value 10 or 11, this pair is taken to produce the pseudo 
random bit 0 or 1, depending on the second bit of the pair. On the other hand if 
a pair happens to be 01 or 00, it will be discarded. The key consists of the initial 
state of the LFSI~ and preferably also of the LFSR feedback logic. For practical 
applications it is assumed that  the feedback connection is to produce maximal 
length LFSR-sequences. 

* A version of this paper will appear in the proceedings of a symposium in honor of 
James L. Massey on the occasion of his 60th birthday. 
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The self-shrinking mechanism of an LFSR might be compared with the 
self-decimation of an LFSR as introduced in [4]. As mentioned in [4], the self- 
decimated sequence cannot be directly applied for stream enciphering. As the 
decimation intervals are revealed by the output sequence, one can derive the orig- 
inal LFSR-sequence at fixed positions from the self-decimated sequence. Thus 
the original LFSR-sequence can be computed by solving linear equations. For 
a shrunken or self-shrunken sequence one also sees certain output bits of the 
original LFSR-sequence, but one does not know the size of the gaps between the 
known bits. 

It turns out that the self-shrinking generator and the shrinking generator 
are closely related to each other. In fact, it will be shown in Section 2 that 
the self-shrinking generator can be implemented as a shrinking generator, and 
conversely, that the shrinking generator can be implemented as a self-shrinking 
generator. The latter implementation however cannot be accomplished with a 
maximum length LFSR. Thus the self-shrinking generator has its main interest 
in implementing the shrinking principle at lower hardware costs. According to 
[1], the effective key size of the shrinking generator, measured in terms of the 
complexity of known cryptanalytic attacks, is roughly half of the maximum pos- 
sible key size. In view of the presently known cryptanalytic attacks (see Section 
5) the effective key size of the self-shrinking generator can be estimated to be 
more than 80% of the maximum possible value. 

It is difficult to give a general and reliable measure for the cryptographic 
quality of pseudo random sequences being applied in stream cipher systems. 
Certainly well known are the classical measures, period and linear complexity. 
For a secure design one should have proofs or at least strong practical evidence 
that these parameters are large enough to withstand the more generic attacks 
like the Berlekamp-Massey LFSR synthesis algorithm [3]. For a self-shrinking 
generator implemented with a maximum length LFSR of length N, it is proved 
in Section 3 that the period and the linear complexity are lower bounded by 
2 [N/2j and 2 [N/2j-1, respectively. Furthermore in Section 4 strong evidence is 
provided that the period is in fact 2 g-1 for N > 3, and that the linear complexity 
is very close to that value. Therefore it is easy to implement the self-shrinking 
generator to satisfy sufficiently large proved lower bounds for period and linear 
complexity. 

The experimental results in Section 4 reveal another interesting fact, namely 
that the linear complexity does not exceed the value 2 N-1 - N + 2. This can 
be considered as an algebraic property of the shrunken LFSR-sequence. The 
original LFSR-sequence has a rich algebraic structure. For being applicable as 
pseudo randomizer for cryptographic purposes it is necessary to destroy most of 
the algebraic structure--in particular the property of satisfying a short linear 
recursion. 

For the self-shrinking generator, the fact that it is unknown at which positions 
the LFSR-sequence is shrunken and that the shrinking is controlled by the LFSR 
itself suggest that most of the algebraic structure of the original LFSR-sequence 
has been destroyed. Thus the above mentioned upper bound on the linear com- 
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plexity appears to be surprising. Proving this fact as ~ell as the conjecture that  
2 N-1 is the minimum period remain as open problems. These problems deal 
with elementary manipulations on LFSR-sequences, for which a thorough math- 
ematical theory is available. 

2 S h r i n k i n g  a n d  S e l f - S h r i n k i n g  

Self-shrinking can be applied to arbitrary binary sequences. The original se- 
quence a = (a0, al ,  a2 , . . . )  is considered as a sequence of pairs of bits ((a0, a l) ,  
(a2, a3) , . . . ) .  If a pair (a2i, a2i+l) equals the value (1, 0) or (1, 1), it is taken to 
produce the pseudo random bit 0 or 1, respectively. On the other hand, if the 
pair is equal to (0,0) or (0, 1), it will be discarded, which means that  it will not 
contribute an output bit to the new sequence s = (so, sl ,  s2 , . . . ) .  

Self-shrinking is in particular intended to be applied to pseudo random se- 
quences in order to produce new pseudo random sequences of (potentially) better 
cryptographic quality. We especially analyze the situation where the original se- 
quence a is generated by an LFSR. For a cryptographic application the key 
consists of the initial state of the LFSR. Preferably the feedback connection is 
variable and also part of the key. The self-shrunken sequence s can be considered 
as being obtained from the original sequence a by discarding certain bits. In the 
average 3/4 of the bits are expected to be omitted. Hence the data  rate of the 
original sequence is reduced by the factor 4. 

It appears to be natural to ask the question whether the self-shrinking gen- 
erator can be implemented as a special case of the shrinking generator. To 
show that  this is in fact the case, let a = (ao,al,a~,...) be the sequence pro- 
duced by an LFSR of length N defining a self-shrinking generator. According 
to the self-shrinking rule, the sequence (ao,a2,a4,...) effects the output  con- 
trol, and (al,aa,as,. . .) defines the sequence being controlled. Both sequences 
can be produced by the original LFSR when loaded with the initial states 
(ao, a2,.. . ,  ag.N-2), or (al, aa,.. . ,  a2N--1) respectively. This implies that  the self- 
shrinking generator can be implemented as a shrinking generator with two LF- 
SRs having identical feedback connections. 

Conversely, we will show that the shrinking generator can be implemented as 
a special case of the self-shrinking generator. To this end, consider an arbitrary 
shrinking generator defined by two linear shift registers LFSR 1 and LFSR 2 
with feedback polynomials f (x) ,  and g(x), respectively. Furthermore, let b = 
(b0, bl, b~,.. .)  and c = (co, cl, c2, . . . )  denote the corresponding LFSR output  
sequences. Then, by applying the self-shrinking rule to the interleaved sequence 
a = (co, b0, cl, b l , . . . ) ,  the original output sequence of the shrinking generator 
is reproduced. On the other hand, it can be shown that the sequence a can 
be produced by an LFSR with feedback polynomial f(x2)g(z ~) = f(x)2g(x) 2. 
This implies that  the shrinking generator has an equivalent implementation as 
a self-shrinking generator. 

The investigations on the shrinking generator in [1] assume that  the two 
LFSRs involved are independent, e.g., that their periods are coprime. Therefore 
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the results in [1] on period and linear complexity do not apply to the self- 
shrinking generator. For obtaining corresponding results for the self-shrinking 
generator, a different approach will be required. 

3 Period and Linear Complexity of Self-Shrunken 
Maximum Length LFSR-sequences 

We now establish lower and upper bounds on period and linear complexity of 
self-shrunken sequences generated by maximum length LFSRs (m-LFSRs). 

3.1 P e r i o d  

Let a = (a0,al ,  a2 , . . . )  be the output  sequence of a non-trivially initialized m- 
LFSR of length N.  Hence a is a sequence with period 2 N - 1. The self-shrunken 
sequence will also be periodic. In fact, after 2(2 N - 1) bits of the original se- 
quence, the sequence of pairs (a0, al) ,  (a2,a3), . . . ,  (a2N_2, a0), (al ,  a2), . . . ,  
(a2N--3, a2N--2) has been processed, and the next pair will be (a0 ,a l )  again. 
Hence the shrunken sequence is repeating. Within this period each possible out- 
put  pair (ai, ai+l),  0 _~ i < 2 N - 1, of the original LFSR-sequence has occurred 
exactly once. As is well-known, within the period of a m-LFSR-sequence each 
of the pairs 01, 10, and 11 appears exactly 2 N-2 times, and the pair 00 appears 
2 N-2 - 1 times. By the definition of the shrinking rule, it follows that  2 N-1 is a 
period of the shrunken sequence. Moreover, as the pairs 10 and 11 occur equally 
often, the shrunken sequence must be balanced. As the shrunken sequence is 
repeating after 2 N-1 bits, it must be purely periodic with period p = 2 N - l ,  i.e., 
sn = s,,+p for all n > 0. This implies that  the smallest period P of s must divide 
2 g - 1 .  Summarizing we obtain 

P r o p o s i t i o n  1. Let a be an m-LFSR-sequence generated by an LFSR of length 
N and let s be the self-shrunken sequence obtained from a. Then s is a balanced 
sequence whose period divides 2 N- I .  

A lower bound on the period of a shrunken m-LFSR-sequence is given in the 
following theorem. 

T h e o r e m  2. The period P of a self-shrunken maximum length LFSR-sequence 
produced by an LFSR of length N satisfies 

P >_ 2 LN/2j . (1) 

P r o o f .  Let us first consider the case when N is even, and let n - N/2 .  Since 
the feedback connection of the LFSR is chosen to produce maximum length 
sequences, every nonzero N-bi t  word appears exactly once when scanning the 
LFSR-sequence with a window of length N over the full period. In view of the 
self-shrinking, we consider the sequence a being scanned over the double period 
with increments by two bits. As the period is odd, the same N-bi t  patterns 
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occur (possibly in different order) as if the sequence were scanned over one 
period with one bit increments. By the maximum length property, the N-bit  
pat tern (1, xl ,  1, x 2 , . . . ,  1, xn) appears in the original sequence for every choice 
of (Xl, x 2 , . . . ,  x , ) .  It follows that  every n-bit pat tern appears in the shrunken 
sequence when scanning it with window size n. 

If a sequence of period P is scanned over an interval of arbitrary length, at 
most P different patterns can occur (independent of the window size). As the 
shrunken sequence contains all 2 n patterns of length n, it follows that  the inequal- 
ity P > 2" must hold. This proves the theorem for the case when N is even. For 
odd g let n = ( g  - 1)/2. Then the (N - 1)-bit pat tern (1, z l ,  1, x 2 , . . . ,  1, x , )  
appears (twice) when scanning the original sequence. The rest of the proof is 
similar as in the case when N is even. [] 

3.2 L i n e a r  C o m p l e x i t y  

For purely periodic sequences the linear complexity L is equal to the degree of 
the minimal polynomial f ( x ) .  Recall that f ( x )  is defined as the characteristic 
polynomial of the shortest linear recursion satisfied by the sequence (see [2]). 
Furthermore, the minimum period of the sequence is the smallest positive integer 
P such that  f ( x )  divides x P -  1. For a self-shrunken m-LFSR-sequence the linear 
complexity satisfies a lower hound as given in Theorem 3. 

T h e o r e m  3. The linear complexity L of a self-shrunken maximum length LFSR- 
sequence produced by an LFSR of length N satisfies 

L > 2 LNI2J-I. (2) 

P r o o f .  By Proposition 1 and Theorem 2 the period P of a self-shrunken m- 
LFSl~-sequence s divides 2 N - l ,  i.e., is of the form P = 2" for some integer 
a > LN/2J. Hence over GF(2) ,  x P - 1 can be written as x P - 1 = ( x -  1) 2=. 
Thus the condition f ( x )  I ( x P - 1 )  implies that  f ( x )  is of the form f ( x )  = ( x - l )  L 
where L is the linear complexity of the sequence s. We claim that  L > 2 "-1.  

Suppose to the contrary that  L < 2 "-1.  Then f ( x )  = (z - 1) L would divide 
( x - l )  2=-~ = x 2~-' - 1 .  Thus z 2"-~ - 1  would be the characteristic polynomial of a 
recursion satisfied by s. This recursion would be s ,  = s,_~,-~ which contradicts 
to the fact that  the minimum period is 2 a. [] 

It is a common assumption in the analysis of the shrinking generator [1] or 
clock-controlled generators that  the two LFSRs involved are independent. This 
allows for example to decimate the process of generating the output  sequence 
with the period of the controlling LFSR. The output  sequence obtained in this 
way can be considered as a decimated sequence of the controlled LFSR. This 
allows to apply the theory of LFSR-sequences to derive results on the period and 
linear complexity of the generated output  sequence. This approach cannot be 
applied to the self-shrinking generator as the controlling and the controlled part 
cannot be separated from one another. For this reason the exact computation 
of the period and the linear complexity of a self-shrunken m-LFSR-sequence ap- 
pears to be difficult. The bounds given in Theorems 2 and 3 are rough estimates. 
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Experimental  results as given in Section 4 support  the conjecture tha t  the period 
P is maximal  for LFSl~-length N > 3, i.e., P = 2 N - t .  For the linear complexity 
L this would imply tha t  L is bounded by 2 N-2 < L < 2 N - t .  Nevertheless the 
bounds as given in Theorems 2 and 3 are far sufficient for practical applications. 
For example for N = 200, period and linear complexity are proved to be at least 
1030 . 

4 Examples and Experimental Results 

By the analysis in Section 3 the period of a self-shrunken m-LFSR,-sequence 
generated by an LFSR of length N is at most  21v-1. So far we have found only 
one example where the period does not reach this max imum value. This is the 
m-LFSI~ of length N = 3 defined by the recursion an = a, , -2  + art-3. The 
corresponding self-shrunken sequence has period only 2 instead of the max imum 
possible value 4. 

Experiments have shown tha t  for all other m-LFSRs of length N < 20 the 
self-shrunken sequences at tain max imum period 2 N -  1. This has been confirmed 
by exhausting all m-LFSRs of length N < 20. Table 1 shows the minimum 
and the max imum value of the linear complexity taken over all self-shrunken 
m-LFSRs of given LFS1%length N for N < 15. 

LFSR-length N # o] m-LFSR  Minimum LC Maximum LC 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

18 
16 
48 
60 
176 
144 
630 
756 
1800 

2 
2 
5 
10 
25 
54 
118 
243 
498 
1009 
2031 
4072 
8170 

8 

2 0 
3 1 
5 3 

13 3 
28 4 
59 5 
122 6 
249 7 
504 8 
1015 9 
2038 10 
4085 11 
8180 12 
16371 13 16362 

Table 1. Minimum and maximum linear complexity of self-shrunken m-LFSRs 

Comment ing Table 1, we first note tha t  for a sequence with an even number  
of l ' s  within the period P ,  the m ax i m um  possible linear complexity is P - 1, as 

P - I  
~,i=o s n - i  = O. For self-shrunken m-LFSR-sequences, max imum and minimum 
value of the linear complexity appear  to be close to each other and very close to 
the max imum possible value 2 N-1 - 1. 
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Furthermore Table 1 shows a remarkable property: Except for N = 4, the 
upper bound attained for the linear complexity is 2 N-1 - 6, where 6 = N - 2. 
This upper bound also holds for the exceptional case N = 4. Hence, for 2 < 
N < 15, (z 2N-' - 1) / (x  - 1) N-2 is a characteristic polynomial of any self- 
shrunken m-LFSl~-sequence produced by an LFSI~ of length N. This fact can be 
viewed as an algebraic property of the self-shrunken LFSR-sequence that  persists 
although most of the algebraic structure of the original m-LFSR-sequence has 
been destroyed. 

5 C r y p t a n a l y s i s  

In this section we discuss some approaches for possible cryptanalytic attacks and 
their complexities. We start  with a general method for reconstructing the original 
sequence from a known portion of the self-shrunken sequence. This method is 
not restricted to the case where the original sequence is produced by an LFSR. 

Assume that  (So, s l , . . . )  is the known portion of the self-shrunken sequence. 
The bit So is produced by a bit pair (ai, aj+l) of the original sequence where the 
index j is unknown. Our aim is to reconstruct the original sequence in forward 
direction beginning with position j .  As we know so we conclude that  aj = 1 and 
aj+l = so. For the next bit pair (aj+2, aj+3) there remain three possibilities, 
namely aj+2 = 1, aj+3 -- Sl if the bit pair was used to produce sl ,  or the two 
alternatives aj+2 = 0,a j+3 = 0 and ai+ 2 - 0, a j+3 = 1 if the bit pair was 
discarded. For each of the three possibilities there are again three alternatives 
for the next bit pair. Therefore, for reconstructing n bit pairs, i.e., N = 2n bits, 
we obtain a total of 

S = 3 n - 1  ,~  3 N/2 = 2 ((l~ 3 ) / 2 ) N  ----- 20"79'N (3) 

possible solutions. However the solutions have different probabilities. We explain 
this fact by considering the above bit pair (aj+2, aj+3). Assuming that  the orig- 
inal sequence is purely random, aj+2 = 1 with probability 1/2. Hence the first 
alternative has probability 1/2 and the other two cases have probability 1/4. In 
terms of information theory the uncertainty about  the bit pair is 

H =  - (1 /2)1og2(1/2  ) - (1 /4 )1og2(1 /4  ) - (1 /4 )1og2(1 /4  ) = 3/2. 

As for the reconstruction the individual bit pairs are supposed to be independent 
from each other, the total entropy for n bit pairs is 3n/2. Therefore the opt imum 
strategy for reconstructing N bits of the original sequence has average complexity 
2 3N]4. For example, for N = 200, this complexity is equivalent to an exhaustive 
search over a key of size 150 bit. 

So far we did not take into account that the original sequence is produced by 
an LFSR. For cryptographic applications the key consists of the initial state and 
preferably also of the LFSR feedback connection. In order to assess the security 
we assume that  the feedback connection is known. With this assumption we 
estimate the difficulty of finding the initial state (or the key) of the LFSR. For 
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the above method of finding the key the average complexity is upper bounded 
by 23N/4, where N is the length of the LFSR. If there are only few feedback taps 
or if they are concentrated around few locations, there are cases where faster 
attacks are possible, as will be shown below. On the other hand, if we exclude 
such special situations we know of no bet ter  method than reconstructing the 
initiM state of the LFSR as described above. 

Suppose for example that  the LFSR only has two feedback taps (which is the 
smallest number of feedback taps for a m-LFSI%). Then the feedback relation 
can be writ ten as ak + a~+t -t- ak+t+, -- 0, for all k E N.  Let aj be the bit of the 
original sequence which determines the first known bit, say so, of the shrunken 
sequence. Our aim is to do an exhaustive search over the two m-bit blocks 

B1 -- (a j ,a j+ l , . . . ,  aj+rn-1) 

~2 = (aj+t,aj+t+l, . . .  , aj+t+rn-1) 

of suitably chosen size m. For every choice of the two blocks the third block 

]33 = (aj+t+s, aj+t+s+l, . . . ,  aj+t+,+m-1) 

is determined by the feedback relation. By self-shrinking there result three bit 
strings. The known segment of the self-shrunken sequence is scanned for the 
occurrence of these strings. For the correct choice of the m-bit blocks the three 
strings are expected to be about  s /4  or t /4  bits apart  from each other.  

We call a block pair a solution if the three strings can be found at suitable 
positions. We investigate the problem regarding the number of solutions that  are 
to be expected. According to (3) there are about 3 m/2 solutions for B1. If one 
knows the position of the substring in the shrunken sequence which is produced 
by the second block B2, one again has about 3 m/2 solutions for B2. As this 
position is not exactly known, the number of solutions for B2 is slightly larger. 
Thus we conclude that  there are at least about 3 m/2 .3 m/2 = 3 m solutions for the 
pair (B1, B2). By the same argument we conclude that  there are at least about 
3 m/2 solutions for B3. It follows that  with probability about  p = 3m/2/2 m, a 
random block B3 is compatible with the shrunken sequence. Thus the number 
of solutions for the pair (B1, B2) is reduced by the factor p due to the recurrence 
relation. Therefore there remain about 

T : 3 m 3m/2-- - 3~"1~-- = 2 [3(l~ s)/2-11m = 21"38'm (4) 
2-~ 2 m 

solutions. For finding these solutions a search over 22m block pairs is necessary. 
In a similar way, with complexity 2 ~m , we do an exhaustive search over m-bit 

blocks 

B i  = a j _ 2  . . . . .  

B~ - ( a j+ , - l ,  a j+ t -2 , . . . ,  a j+t-m) 

in reverse direction from position j ,  or j + t ,  respectively. As for (B1, B2) there re- 
I g I ! main T = 2 L3s' ' '  solutions for (B1,132). Every solution for (B1, B2) and (B1, B2) 



213 

defines 4m bits of the LFSR-sequence. Since N bits are required for reconstruct- 
ing the original LFSR-sequence, we choose m = N / 4 .  Thus the complexity of 
the search is 2 - 2 N/2 with a possibility of T 2 = 2[ z(l~ = 2 ~ re- 
maining solutions. The correct solution is singled out by trying all these possible 
solutions. This second exhaustive search obviously has complexity 20"69"N which 
dominates the over all complexity of the attack. Thus the fact that  the LFSR 
has only two feedback taps allows an attack which is slightly faster than the 
general method whose complexity is 2 ~ 

The described method is a divide and conquer attack. The  key is divided 
into two block pairs (B1,B2) and (B~,B~), and the search for each block pair 
is done individually. It seems straightforward to extend the attack by searching 
for k rather  than for two different m-bit block pairs. The complexity then would 
be k22~n with (21"38"m) k possible solutions remaining. Each solution would de- 
termine 2kin bits of the LFSR-sequence. In order to obtain N bits we would 
choose k = N/(2m) .  For k > 2 the initial search has lower complexity. However 
the over all complexity is still dominated by the number of solutions which is 
(21"38"m) N/(2m) : 20"69"N a s  for k = 2. 

It turns out that  the attack is less effective if the number f of feedback taps 
increases. Corresponding to the feedback tap positions at the LFSI:t we would 
search for tuples (B1 , . . . ,  By) of m-bit blocks. Instead of (4), a number 

3m/2 
T -- (3m/2) 1 2, ~ -- 3 ( ( I+O/2)m2-m = 2 [0~ 3)('fJcl)/2-1]rn (5) 

of candidate solutions would remain after the search. Following the idea of divide 
and conquer we would search for at least k -- 2 such tuples. For k -" 2 these 
would determine 2 f r o  bits of the original LFSR-sequence. This suggests to choose 
m -- N / ( 2 f ) .  Thus the complexity of the search is again 2 - 2  N/2 but with a 
possibility of 

T 2 : 2[(log ~ 3)(f-I-1)/2-1]N/] ._  2[( log 2 3)(l/2-1/(2.f)]N ( 6 )  

solutions. For f = 4 this quantity is 2 ~ and the asymptotic value, as f 
increases, is 2 (0~ 3)/2)N = 20.79.N. This coincides with the number of solutions 
(3) obtained for the general method. 

The feasibility of the attack is further limited as the blocks become shorter. 
For shorter blocks the corresponding shrunken strings are more likely to appear 
accidentally in the shrunken sequence. This has the effect that  it is more difficult 
to link the blocks with the corresponding positions in the shrunken sequence. 
Hence more incorrect solutions are likely to be accepted in the initial search. 

The above cryptanalytic investigations give no means to break the self- 
shrinking generator, if we exclude special situations. Our best method for re- 
constructing the initial state of an LFSR of length N has complexity 2 ~ 
even if the feedback logic is known. If the feedback connection is also part  of the 
key, the reconstruction of the initial state has to be combined with an exhaus- 
tive search over all (primitive) feedback connections. Therefore the complexity 
of the attack is increased by the factor ~0(2 N - 1) /N,  which for large N may be 
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approximated by 2 N . Hence the total  complexity of the at tack is approximately 
21"7~'N. As the key size is about  2N,  the effective key size is more than  80% of 
the max imum possible value. 
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