Probabilistic k^m-anonymity
(Efficient Anonymization of Large Set-valued Datasets)

Gergely Acs (INRIA)
gergly.acs@inria.fr

Jagdish Achara (INRIA)
jagdish.achara@inria.fr

Claude Castelluccia (INRIA)
claude.castelluccia@inria.fr
Overview

- Motivation
- Background: k^m-anonymity
- Why k^m-anonymity is impractical?
- Relaxation of k^m-anonymity: Probabilistic k^m-anonymity
- How to anonymize to have probabilistic k^m-anonymity?
- Performance evaluation
- Conclusions
De-identification

- **Personal data** is any information relating to an identified or identifiable individual (EU Directive 95/46/EC)

- **De-identification** breaks links between individuals’ identity and their data (records)

- Regulations apply only to **personal data**!
 De-identified data is non-personal data and hence out of the regulation

- NOTE: de-identification does NOT include the control of (sensitive) attribute inference
No direct Personal ID in the dataset (e.g., phone numbers)

Each user has a subset of items (e.g., visited locations, watched movies, purchased items, etc.)

High-dimensional and sparse data!

Privacy test: Location uniqueness

- Derived from Call Data Records
- 4,427,486 users
- 1303 towers (i.e., locations)
- Mean tower # per user: 11.42 (std.dev: 17.23)
- Max. tower # user: 422
Privacy test: Location uniqueness

- If the adversary knows \(m \) towers of a user, what is the probability that the user is the only one who have these towers in the dataset?

- **Similar study:**

Background: k^m-anonymity

- For ANY m items, there are at least k users who have these items
 - if m equals the maximum item number per user, then k^m is equivalent to k-anonymity
 - However, k-anonymity suffers from the curse of dimensionality\cite{Aggarwal2005} (i.e., very bad utility for high-dimensional, sparse data)

- Rationale of k^m-anonymity: adversary is unlikely to know all the items of a user

- Allows larger utility by applying fewer generalizations (aggregations)

\cite{Aggarwal2005} C. C. Aggarwal, *On K-anonymity and the Curse of Dimensionality*, VLDB, 2005
Example: k vs. k^m-anonymity

<table>
<thead>
<tr>
<th>Rec#</th>
<th>Original Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{LA}</td>
</tr>
<tr>
<td>2</td>
<td>{LA, Seattle}</td>
</tr>
<tr>
<td>3</td>
<td>{New York, Boston}</td>
</tr>
<tr>
<td>4</td>
<td>{New York, Boston}</td>
</tr>
<tr>
<td>5</td>
<td>{LA, Seattle, New York}</td>
</tr>
<tr>
<td>6</td>
<td>{LA, Seattle, New York}</td>
</tr>
<tr>
<td>7</td>
<td>{LA, Seattle, New York, Boston}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rec#</th>
<th>2-anonymity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{East US}</td>
</tr>
<tr>
<td>2</td>
<td>{East US}</td>
</tr>
<tr>
<td>3</td>
<td>{West US}</td>
</tr>
<tr>
<td>4</td>
<td>{West US}</td>
</tr>
<tr>
<td>5</td>
<td>{LA, Seattle, West US}</td>
</tr>
<tr>
<td>6</td>
<td>{LA, Seattle, West US}</td>
</tr>
<tr>
<td>7</td>
<td>{LA, Seattle, West US}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rec#</th>
<th>2^2-anonymity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{LA}</td>
</tr>
<tr>
<td>2</td>
<td>{LA, Seattle}</td>
</tr>
<tr>
<td>3</td>
<td>{West US}</td>
</tr>
<tr>
<td>4</td>
<td>{West US}</td>
</tr>
<tr>
<td>5</td>
<td>{LA, Seattle, West US}</td>
</tr>
<tr>
<td>6</td>
<td>{LA, Seattle, West US}</td>
</tr>
<tr>
<td>7</td>
<td>{LA, Seattle, West US}</td>
</tr>
</tbody>
</table>

![Diagram of US regions with LA, Seattle, New York, Boston, and All (US) connections]
Problem of k^m-anonymity

- Verifying k^m-anonymity can have exponential complexity in m \[^1\] if m is large (typically when $m \geq 5$)

- The exact speed depends on the structure of the generalization hierarchy and the dataset itself\[^1\]

\[\Rightarrow \text{DOES NOT WORK FOR MANY REAL-WORLD DATASETS!} \]

Probabilistic k^m-anonymity

- For **ANY** m items, there are at least k users who have these items with probability at least p
 - where $p > 0.9$, and typically should be around 0.99 or 0.999

- Intuition: instead of checking all possible m items, we select **randomly** some of them from the dataset, and check k-anonymity of **only** these samples!
 - we have k-anonymity for **ANY randomly** selected m items with large probability (based on sampling theorems)!

- How to sample these m items?
- How many samples are needed?
How to sample m-itemsets?

- **Naïve approach:**
 1. Sample a record
 2. Sample m items from this record

 Biased towards selecting more popular itemsets!
 (e.g., popular places in location data)

- However, adversary may learn unpopular items easily
 e.g., home address is not necessarily popular...

- **Our approach** is more general:
 Select among all m-itemsets uniformly at random using a fast-mixing Markov chain

 Adversary can learn any m-itemset with equal probability!
How many samples?

- From the Chernoff-Hoeffding bound:
 \[N = O \left((1 - p)^{-2} \ln \left(\frac{1}{1 - p} \right) \right) \]

to have \(k^m \)-anonymity with probability \(p \)

- \textit{Independent from} \(m \), the dataset size, and the number of all items!

<table>
<thead>
<tr>
<th>(p)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>(\approx 60 \text{ K})</td>
</tr>
<tr>
<td>0.999</td>
<td>(\approx 5 \text{ M})</td>
</tr>
<tr>
<td>1</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>
Anonymization

INPUT: p – probability, k, m – privacy parameters, D – dataset

1. **SAMPLING**: Pick (uniformly at random) a single m-itemset from D using MCMC sampling

2. **IF** the sample does NOT satisfy k-anonymity
 GENERALIZE an item in the sample such that generalization error is minimized (e.g., average cell size in location data)

3. **REPEAT** the above steps until $O \left((1 - p)^{-2} \ln \left(\frac{1}{1 - p} \right) \right)$ consecutive samples satisfy k-anonymity

AMPLIFY UTILITY: Execute the above algorithm multiple times and select the one which has the least generalization error
Running complexity

- The required number of samples which must satisfy k-anon. is
 \[N = O \left((1 - p)^{-2} \ln \left(\frac{1}{1 - p} \right) \right) \]

- For each sample, the Markov chain sampling runs in
 \[O(m^2 |D|) \]

- The maximum number of generalizations is the number of possible items which is \(O(|\mathbb{I}|) \)

- Hence, the total complexity is
 \[O \left(m^2 |D| |\mathbb{I}| (1 - p)^{-2} \ln \left(\frac{1}{1 - p} \right) \right) \]
 \(\Rightarrow \) polynomial in the number of records \(|D|\), number of possible items \(|\mathbb{I}|\), \(m\), and probability \(p\)
Performance evaluation: Privacy guarantee

RECALL: a user has fewer than 11 visited towers on average

- We can have different privacy guarantee (i.e., k, p) for different m!
- In the evaluation:
 - when $m \leq 4$: k is 10 or 20, $p = 1$ (rationale: too easy to learn fewer than 4 locations)
 - when $m \geq 5$: k is 10 or 20, p is 0.99 or 0.999 or 0 (no guarantee)
- Execution time: couple of hours in all cases (dominated by $p = 1$)
Performance evaluation

Privacy GOAL 1:

- if $1 \leq m \leq 4$: 20^m-anonymity with prob. 1
- if $m = 5$, 20^m-anonymity with prob. p
- if $m \geq 5$, $p = 0$ (no guarantee)

Original:
Performance evaluation

Privacy GOAL 2:

• if $1 \leq m \leq 4$: 20^m-anonymity with prob. 1
• if $5 \leq m \leq 11$, 20^m-anonymity with prob. p

Original:
Average partition size

- Average territory of the aggregated cells

\[p = .99 \]

\[p = .999 \]
Conclusions

- k^m-anonymity is guaranteed with certain confidence
 - Adversarial knowledge is limited to any m items
 - Probabilistic relaxation improves scalability and utility

- Proposed anonymization to achieve this guarantee
 - Running time is polynomial in m, dataset size, and universe size

- Is it enough? If so, how to choose k, m, p?
 - Perform Privacy Risk Analysis
Thank You!

Q (&A)
MCMC for sampling m-itemsets

Start with any existing m-items in the dataset.

REPEAT

1. PROPOSAL:
 1.1 sample a user uniformly at random
 1.2 select m items C from this user also uniformly at random

2. PROBABILISTIC ACCEPTANCE:
 2.1 accept it (i.e., S=C) with a probability, which is
 \[\min(1, \frac{\text{Pr["S is proposed"]}}{\text{Pr["C is proposed"]}}) \]

UNTIL Convergence
personal data is any information relating to an identified or identifiable individual

- can be used to identify him or her, and to know his/her habits

- account must be taken of all the means available [...] to determine whether a person is identifiable

- any processing of any personal data must be (1) transparent (to the individual), (2) for specified explicit purpose(s), (3) relevant and not excessive in relation to these purposes

- Legally nonbinding: all member states have enacted their own data protection legislation

- Anonymized data is considered to be non-personal data, and as such, the directive does not apply to that